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SUMMARY
The natural convection from a vertical cylinder, is determined in the limiting case of very large Prandtl
number, the Grashof number remaining finite.

1. Introduction

This paper studies the natural convection flow on a vertical cylinder when the Prandtl
number P is very large. Little work has been done in this field apart from the experiments
of Libby [1] and a numerical calculation made by Fujii and Uehara [2] for the case P = 100.

The method adopted is to split the flow into a thin layer close to the surface of the
cylinder (where the temperature varies), surrounded by a much thicker layer where the
velocity is reduced to zero. The solution is determined, in the inner region in terms of a
parameter which is roughly equal to the ratio of the thickness of this layer to the radius
of the cylinder; it is valid up to a vertical height at which this parameter is about unity.
The basic properties of the flow are evaluated; the heat transfer coefficient is shown to be
in qualitative agreement with Libby [1].

2. Equations of motion

Let cylindrical coordinates (x, r) be taken whose axis is the vertical centre line of the
cylinder and whose origin is at the centre of the base of the cylinder. Let (u, v) be the
corresponding velocity components.

Then the boundary layer equations are
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where v is the kinematic viscosity, g is the acceleration due to gravity, B, is the coefficient
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of volumetric expansion, P is the Prandtl number and

g L Te 4
CT,-T,’ @
where T is the temperature of the fluid and T, T, are the constant temperatures of the
surrounding fluid and cylinder respectively.
Equation (1) may be eliminated by introducing a stream function ¥ such that

ur = ——, vr= — —, (5)

The boundary conditions are: on r = g, the surface of the cylinder, u =0 =20, 8 =1,
and at large radial distances u, 8 tend to zero.

3. Flow in the inner temperature layer

The problem of natural convection from a vertical flat plate at large values of P has been
discussed by Stewartson and Jones [3] and independently by Kuiken [4]. These reports
show that the flow over a flat plate consists of two regions, namely, a thin temperature
region, where buoyancy is roughly balanced by viscosity and a thick momentum layer,
where the temperature is approximately constant. The thicknesses of these regions were
found to be of respective orders

4 \* 4P \*
—— ) x and { — ) x,
GP G )

where G = Grashof number

_ BT = T ©

v

Thus in the limit as P — co with G finite, the temperature layer becomes vanishingly thin
while the momentum region becomes infinitely thick. This suggests, in the cylindrical case,
that at finite values of x for sufficiently large P the thickness of the temperature layer will
be much smaller than the radius of the cylinder.

Thus the appropriate variables inside the inner layer are:

64 \* x r*—at
X={—)2, v= ,
GP) a aX

¥ = 242 va (-53—) (X, Y);

™)

it should be noted that X gives the order of magnitude of the ratio of the thickness of the
temperature layer to the radius of the cylinder. This change of variable is an adaption of
that used by Sparrow and Gregg [5] in their discussion of this problem at moderate Prandtl
numbers.
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From (7) it is readily shown that

v (G\* 4
u=-—|— i ®)
x \ P/ 0Y
The variables (7) and (8) reduce to Kuiken’s inner flat plate variables in the limit as g — 0.

When (7), (8) are imserted in (2), (3) the following equations are obtained
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The bonndary conditions on f, 6 at Y = 0 are that

1+ XY) + 0

and

(1 + XY)

=-2 =0, 0=L
F=%r 6

For very large values of P, (9), (10) reduce to

2*f

-5 6 =0, (1D
2’0 00

=T tY =0, 12)

with an error of order X i.e. of order P™* Equations (11), (12) have been solved in [3]
and [4]. Kuiken gives the following results for the solutions f,, 8, of (11), (12):

o2 of
._f;’ =825 —2=—71lat¥=0
Y oY
and
. (13)
fo¥) = ay + a,¥, with a, = —.261, q, = .511
and
0o -0 J

in the limit as ¥ — 0.

To summarise, when P is large, and the Grashof number is finite, the inner temperature
layer forms a thin skin (whose thickness varies as P™*) on the surface of the cylinder.
From (13) it can be shown that the outer surface of this skin moves with velocity U,(x),

Journal of Engineering Math., Vol. 10 (1976) 115-124



118 L. J. Crane

where

2va, [ G\*
Uglx) = — <—> (14)

P
4. Flow in the outer momentum layer

In the outer momentum layer, where the temperature is sensibly constant, the cylinder
appears to move with velocity Uy(x). In this section the flow corresponding to such a
moving cylinder is developed. (It will be verified in section 5 that this solution does in
fact match the inner solution). Now the boundary layer due to a cylinder which moves
with constant velocity has been determined by Crane [6]. The method used in (6) suggests
the following change of variables when the radius of the cylinder is very much thinner
than the boundary layer:

Uyr?
Yy=vwxF@,p, n= 40 , (15)
VX
4vx
p =log 5 | =2log X + log P — log(4a,)
Uya
=2logX + log P — .716.
In terms of (15)
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and equation (2), with 6 = 0, reduces to:
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The boundary conditions are: on the surface of the moving cylinder, which may be taken

to a good approximation at r = g, i.e. 7 = e ?,
oF 1 OF
—=2and F+— —=¢7%, 18
o an 3 3 e (18)

while 0F/0n — 0 as n — co.

Following [6], it will be assumed that, in the limit as § — oo (which occurs when P — o0)
the terms in 6/ tend to zero. Then, for large values of § equation (17) becomes approxi-
mately

0 0*F 0*F 1 [ 8F\?
- +lF- e e | — =0_ 19
611(" 0112) = o 4<6n> )
Equation (19) has the property that if Fo(y) is a solution so is Fo(z) where z = 7/y and y
is any positive function of f. Equation (19) then becomes

d d’F d’F 1 /dF,\?
() - 5 () = =
Z

dz dz? 4\ dz

Journal of Engineering Math., Vol. 10 (1976) 115-124



Natural convection from a vertical cylinder 119

A standard solution of (20) was calculated subject to the conditions:

—— >0 as z—> w
dz

Fo—0 as z- 0,

When z is large

Fo=20+1)+ 3

- ey
n=1 ZnD ’
where D is a constant to be determined. The first few terms of (21) and its derivatives
provide starting values (at a sufficiently large value of z) for the numerical integration of
(20) in the direction of decreasing z, see table 2. When z is small it is found that, when
D = .539,

Fo ~ Az(log z + B — 1) + O(z*(log 2)?),

dF
® ~ A(log z + B) + O(2),
Z

where 4 = —30.90, B = 4.61.
Now when z is small

w@;_y dz

oF 1 dF A(l + B
L 0 _ (log z )+0(z).

It follows that the first part of condition (18) will be satisfied, to within a fractional error
of order e %, (i.e. P™%) provided

B = p* —log B* + B — log(—34), 22)

where f* = —2y/4.
Thus a first approximation to the outer velocity profile is

u 1 dF,

U, y dz

The error due to the neglected terms in 0/8f in (17) is readily shown to be of order (8*)~*.
This error may be corrected by expanding F in the series

F = Fy(2) + El’: Fi@ +... 23)

The equation for F,; is found by substituting (23) in (17) and equating terms of order
(%", Then

+ +1F, +iF, - 0 Ty
04 . dz

d*F, d*F, d*F, d*F, 1 dFy dF, 1 [dF,\*
Z —
dz® dz* dz* 2 dz dz 4

(24)
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The solution of (24) for which

d*F, dF,
Fo=|—~) =0, =0
( 1)0 (dzz )0 (dZ >°o

is given in table 2; note the values

dF _
( ‘) = C, =200, F,(0)=.154.
0

dz
Now atyp =e™*
u 1 —~
—— = ——[A(=p —logy + B) + C{/p*] = 1.
U, 2y .

It follows that the definition (22) of f* must be amended to
B = p* — log p* + B — log(~3$4) + C,/Ap*
= f* — log f* + 1.87 — .65/f*. 25

To summarise: the outer velocity profile is

u 1 [dFy 1 dF (] 6)
U,  Ap*| dz = B* dz )|
This formula gives u/U, to within a few percent when B* or f is greater than about 3.
This will be roughly true for X > .1 when P > 10%.

5. Higher approximations to the inner solution

The error in the approximate inner solution (13) has two sources, firstly that (13) is a
solution of the truncated equations (11), (12) in which terms of order X have been ne-
glected; and secondly that the outer solution (26) does not exactly match the inner solu-

tion (13).
The first source of error may be approximately corrected by writing

f=fo+ Xf1, 0=0+ X0,. @7)

When (27) are inserted in (9), (10) and terms of order X equated it is found that
d’f, d’fo  d*f,
—— + 6 Y =0, 28
ays POt gy T gy (28)
d*o, do, dfy do, db, d*o,

+3fo————0, +4 Y = 0. 29

avr Ty Ty Myt e @)

Table (1) gives the solution to (28), (29) which satisfies the conditions:
onY =0,
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and at ¥ = o0,

L0, 8, =0.
dy !

To turn to the second source of error. The inner limit of the outer flow (26) is

U, OF

2 0y

= U, [1 — ﬁl;log(l + XY)]

XY 5
=Ug|l— Iz + O(X*) |,
when the outer solution is expressed in terms of X, Y.
Now the outer limit of the inner flow is
U = Uo.

It follows that a correction term of order X/f* must be added to (27), i.e.

X X
f=fo+Xf, +E*“f1z, 6 =6, +X01+F012a (28)
where
d
fiz ~ b, — a,Y, 0;, ~ 0, for large values of Y,
dy
and at Y =0,
daf
Jiz = d;,z =0, =0.

The solution f,, which satisfies these conditions is given in table 1, from this integration
it is found that

b, = .34.

It should be noted that the term in b, is unmatched in the outer flow; this defect may be
corrected by amending the value of Uy(x) to

w [ G\? b X
6. Boundary layer properties

In this section some of the overall properties of the flow are brought together.
Maximum velocity = Ugy(x)

ETEAN bX  x 10
“’;(‘P_) [a1+ 2%+ o )]. (30)
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Rate at which mass is entrained/unit length of cylinder

= 27 pvx F(00)
= 27 pyvx [Fo(oo) + Fl’;Fl(OO) + O(ﬁi2 )]
154
=27 pvx [3.078 + —ﬁ;"_] €19)

Heat transfer, in this case expressed in terms of the Nusselt number N defined by

Nz -2 00
=-2na|— _

is most conveniently expressed in terms of the dimensionless number N defined by

— xN
N=r—r
2na(GP)*
1 [ do, do, X db,,
== 7 —+ ox?
\/Z[dY dy p* dy + oY Y=0
' X
=.503 + .186 X — .123 F; 32)

Note that X, * are defined by equations (7), (25) respectively.
7. Discussion

The most important of the above properties is (32) for which it should be noted that the
term in X/B* is negligible for P > 10* and X < 1. It follows that (32) is now sensibly

N =.503 + .186 X + O(X?). (33)

It is interesting to compare (33) with the numerical calculations of Fujii and Uehara [2],
for P = 100, whose results when expressed in the notation of this paper give

N = .486 + .051 X — .003 X2. (34)

While the agreement between (33), (34) cannot be expected to be good, nevertheless (34)
indicates that the error in (33) should be less than one per cent even when X = 1.

The experiments of Libby [1] (reported in a review article by Soehngen [7]) were performed
on a cylinder of radius 1.85 cm at a vertical height of 7 cm in the ranges

10* < P <105 10* < PG < 105.

This gives a range of values of X from .1 to 1 and of § from 4 to about 12, in which (33)
is valid. Libby’s results show a linear dependence of N on (GP)* giving a value of N = .47.
It is surprising that no curvature effects were observed in view of the range of values of X.
However the experimental values for wall temperature gradient were obtained from the
temperature profile. Now consideration of table 1, shows that the average value of 8, in the
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range 0 £ Y £ .75 (which corresponds roughly to the linear part of the temperature
profile), is about .02. It follows that the average effect of curvature on the temperature
profile in this range is at most about 29 (when X = 1). Thus curvature will have no
sensible effect on values of wall temperature gradient derived from points on the experi-
mental temperature profile.

TABLE 1

Y fo fjf; Bo fi Z’; 6, fiz fi%i 0y2
0 0 0 1.000 0 0 0 0 0 0
25 023 177 .822 0 01 -04 -0 - .07 .04
.50 084 302 .649 0 0 -05 — .03 -— .14 .08
75 171 387 485 0 -0 -0 —.08 -2 .12
1.00 275 441 342 0 —.02 04— 14 - 29 .14
1.25 390 474 225 —01 —.03 09 -2 - 38 .15
1.50 Sl 492 138 —.02 —.02 A1 — 33 — 48 .13
1.75 635 502 078  —02 -—.01 12 — 46 — .59 .11
2.00 761 507 041 —02  —.01 10 -6 — 70 .08
2.25 890  .509 020 —.02 0 07 -8 -— 8 .05
250  1.016  .510 009  —.02 0 04 —104 — 94 03
275 1143 510 003 —.02 0 02 —129 —107 .02
3.00 1271 .511 001 —.02 0 01 —157 =119 .01
325 1399 510 0 -.02 0 0 —18 -~132 0
350 1.526 511 0 —.02 0 0 —223 —145 0
TABLE 2

dF, d2F, dF, d*F,

log z Fo dz Tdz? Fi dz dz?
—12 001 227 —30.8 0 20.0 — 082
—10 009 166 —30.3 001 195 — 416
-8 046 107 —28.5 006  17.8 —1.49
-6 .199 54.4 —229 038 128 —3.51
-4 .659 18.4 —12.5 .160 4.96 —3.64
-2 149 3.36 — 3.42 343 .50 — 85

0 230 326 — A2 378 —.026 — .003

2 277 021 —.030 297 —.006 .007

4 297 001 —.002 224 — 0005 .0006

6 3.04 .0001 —.0001 184  —.00003 .00005

8  3.07 .000002 —.000004 167  —.000005 .000003
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