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Natural convection from a vertical cylinder 
at very large Prandtl numbers 
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SUMMARY 
The natural convection from a vertical cylinder, is determined in the limiting case of very large Prandtl 
number, the Grashof number remaining finite. 

1. Introduction 

This paper studies the natural convection flow on a vertical cylinder when the Prandfl 
number P is very large. Little work has been done in this field apart from the experiments 
of  Libby [1] and a numerical calculation made by Fujii and Uehara [2] for the case P = 100. 

The method adopted is to split the flow into a thin layer close to the surface of the 
cylinder (where the temperature varies), surrounded by a much thicker layer where the 
velocity is reduced to zero. The solution is determined, in the inner region in terms of  a 
parameter which is roughly equal to the ratio of  the thickness of  this layer to the radius 
of  the cylinder; it is valid up to a vertical height at which this parameter is about unity. 
The basic properties of  the flow are evaluated; the heat transfer coefficient is shown to be 
in qualitative agreement with Libby [1]. 

2. Equations of motion 

Let cylindrical coordinates (x, r) be taken whose axis is the vertical centre line of  the 
cylinder and whose origin is at the centre of the base of  the cylinder. Let (u, v) be the 
corresponding velocity components. 

Then the boundary layer equations are 

a (uO + -~r (vr) o, (1) 
Ox 

Ou Ou v d ( Ou'] 
- -  - -  - r + O f l l O ( T , ~  - T ~ o ) ,  (2) 

u Ox + v  Or r Or \ Or] 

00 00 ~ 0 ( 00~ (3) 
U - - q - V  -- r , 

Ox Or rP Or Or ] 

where v is the kinematic viscosity, 9 is the acceleration due to gravity, fll is the coefficient 
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of  volumetric expansion, P is the Prandtl number and 

T - T o o  
0 - T w -  Too' (4) 

where T is the temperature of the fluid and Too, Tw are the constant temperatures of the 
surrounding fluid and cylinder respectively. 

Equation (1) may be eliminated by introducing a stream function ~ such that 

0O a0 
u r  = -&r  ' v r  - ,~x " (5) 

The boundary conditions are: on r = a, the surface of the cylinder, u = v = 0, 0 = 1, 
and at large radial distances u, 0 tend to zero. 

3. Flow in the inner temperature layer 

The problem of  natural convection from a vertical flat plate at large values of P has been 
discussed by Stewartson and Jones [3] and independently by Kuiken [4]. These reports 
show that the flow over a flat plate consists of two regions, namely, a thin temperature 
region, where buoyancy is roughly balanced by viscosity and a thick momentum layer, 
where the temperature is approximately constant. The thicknesses of these regions were 
found to be of respective orders 

and ( lx 
GP ] 

where G - Grashof number 

o ~ d T ~ , -  T |  ~ 
-- (6) y2 

Thus in the limit as P ~ oe with G finite, the temperature layer becomes vanishingly thin 
while the momentum region becomes infinitely thick. This suggests, in the cylindrical case, 
that at finite values of x for sufficiently large P the thickness of the temperature layer will 
be much smaller than the radius of the cylinder. 

Thus the appropriate variables inside the inner layer are: 

{ 64 \~ X r 2 - a  2 
X = \ ~ , ] |  ~-, r = a= - -~ - -  , 

(7) 

o = 2,/3va ( G \--fig-,] f (X ,  r ) ;  

it should be noted that X gives the order of magnitude of the ratio of the thickness of the 
temperature layer to the radius of the cylinder. This change of variable is an adaption of 
that used by Sparrow and Gregg [5] in their discussion of this problem at moderate Prandtl 
numbers. 
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Natural convection from a vertical cylinder 117 

From (7) it is readily shown that 

u =  x \ i , /  b~" (8) 

The variables (7) and (8) reduce to Kuiken's inner flat plate variables in the limit as a ~ ~ .  
When (7), (8) are inserted in (2), (3) the following equations are obtained 

a3f ~2f 
(1 + X Y ) - ~ -  2 + X --~-~- + O 

--]--~--[--X{ ~2f Of ~2f f~f } ~2f __2(~f~21.~_ 0 (9) 
axaY ag 3Y 2 a X  + 3 f - - ~  W k a Y / ]  

and 
OzO 80 

(1 + xY) -g~r + x - ~  

- x ( a f  00 
\OY c~X (?Y ~ + 3 f - - ~  =-O. (10) 

The boundary conditions on f ,  0 at Y = 0 are that 

0f 
f = - - = 0 ,  0 = 1 .  

~Y 

For very large values of P, (9), (10) reduce to 

aV 
~y--~ + 0 = o, (11) 

020 00 
+ 3f--z::~. = 0, (12) 0y---~ 

(Tx 

with an error of order X i.e. of order P-+. Equations (11), (12) have been solved in [3] 
and [4]. Kuiken gives the following results for the solutions fo, 0o of (11), (12): 

aZfo 00o 
OyZ - .825, OY .711 at Y =  0 

and 

fo (Y)  = ao + alY, with a o = - .261,  al = .511 

and 

0 o ~ 0  

(13) 

in the limit as Y ~ oo. 
To summarise, when P is large, and the Grashof number is finite, the inner temperature 

layer forms a thin skin (whose thickness varies as P-+) on the surface of the cylinder. 
From (13) it can be shown that the outer surface of this skin moves with velocity Uo(x ), 
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where 

U o ( x ) -  2va, ( G f x  (14) 

4. Flow inthe outer momentum layer 

In the outer momentum layer, where the temperature is sensibly constant, the cylinder 
appears to move with velocity Uo(x ). In this section the flow corresponding to such a 
moving cylinder is developed. (It will be verified in section 5 that this solution does in 
fact match the inner solution). Now the boundary layer due to a cylinder which moves 
with constant velocity has been determined by Crane [6]. The method used in (6) suggests 
the following change of variables when the radius of the cylinder is very much thinner 
than the boundary layer: 

Uo r2 
- - 9  ~k = vx F(t/, /7), t~ = 4vx 

/ 4vx k 
/7= log~ u--U~) = 21ogX + l o g P - l o g ( 4 a l )  

= 21ogX + l o g P -  .716. 

In terms of (15) 

and 

The 
to a good approximation at r = a, i.e. t~ = e -#, 

1 (3F _# 
0F = 2  and F + - - - - = e  , 
~?t/ 2 0/7 

while aF/at/-+ o as t/--> oo. 

(15) 

u 1 OF v F 1 OF 1 OF] 
- , v = - - - L F +  (16) 

Uo 2 at/ r 2 aft zt/-ffq-~] 

equation (2), with 0 = 0, reduces to: 

a ( 02F\  ~ a2F 1 ( o n ) 2  1 02F OF 1 0F a2F _ 0 .  (17) 

at/ t/0-'0--~'ff-)+zF at/2 -4-\-~-q] 4 a/Tdt/ a~ + 4 0/7 at~ ~ 

boundary conditions are: on the surface of the moving cylinder, which may be taken 

(18) 

Following [6], it will be assumed that, in the limit as fl ~ ~ (which occurs when P ~ ~ )  
the terms in O/Off tend to zero. Then, for large values of fl equation (17) becomes approxi- 
mately 

0n t/ at/2] +�89 at/2 - - - 4 \ a t l ]  =0 .  (19) 

Equation (19) has the property that if Fo(t/) is a solution so is Fo(z) where z = t//? and 7 
is any positive function of/7. Equation (19) then becomes 

d ( z d Z F o ~  dZFo 1 ( d F o ~  2 
dz 2 ] + �89176 dz 2 4 \  dz ] =0" (20) 
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A standard solution of  (20) was calculated subject to the conditions: 

dF~ ~ 0  as z ~ o o  
dz 

F o ~ O  as z-+O. 

When z is large 

o~ An 
Fo = 2(D + 1) + • (21) 

Z,D, n = = 1  

where D is a constant to be determined. The first few terms of (21) and its derivatives 
provide starting values (at a sufficiently large value of z) for the numerical integration of 
(20) in the direction of  decreasing z, see table 2. When z is small it is found that, when 
D = .539, 

Fo "~ Az(log z + B - 1) + O(z2(log z)2), 

dFo 
- -  ,-~ A(log z + B) + O(z), 
dz 

where A = -30.90,  B = 4.6I. 
Now when z is small 

~gF 1 dF o A(log z + B) 
- - + O ( z ) .  

~q ~ dz 

It follows that the first part of  condition (18) will be satisfied, to within a fractional error 
of  order e -a, (i.e. P-~) provided 

fl = fl* -- log fl* + B - log(- �89 (22) 

where fl* = -2v/A.  
Thus a first approximation to the outer velocity profile is 

u 1 dF o 

U o y dz 

The error due to the neglected terms in ~/Ofl in (17) is readily shown to be of order (fl*)-i.  
This error may be corrected by expanding F in the series 

F = Fo(z) + ~ ,  Fl(Z ) + . . .  (23) 

The equation for F 1 is found by substituting (23) in (17) and equating terms of order 
( f l , ) -  i. Then 

daF1 d2F1 d2F1 d2Fo 1 dF 0 dF1 
z~3-z3 + ~ z  2 + � 8 9  2 +�89 dz 2 2 dz dz 

1 (dFo  2 
+ -a-\-dTz ] = 0. 

(24) 
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The solution of (24) for which 

(Vl)O k dZ2 /0 "~- O, ~ UZ /o~ = 0 

is given in table 2; note the values 

MF1 ~ : C 1 = 20.0, F I ( ~  ) = .154. 
-2Uz/o 

Now at q = e -~ 

u 1 
- [ A ( - f l  - log~ + B)  + Cl i f f*  ] = 1. 

Uo 27 

It follows that the definition (22) of fl* must be amended to 

fi = fi* - log fl* + B - log(- �89 + C1/Afl* 

= fl* - log fl* + 1.87 - .65/fl*. (25) 

To summarise: the outer velocity profile is 

o()]1 
U o Aft* k dz + fi* az + - ~ T  �9 (26) 

This formula gives u/U o to within a few percent when fi* or fl is greater than about 5. 
This will be roughly true for X > .1 when P > 104. 

5. Higher approximations to the inner solution 

The error in the approximate inner solution (13) has two sources, firstly that (13) is a 
solution of the truncated equations (11), (12) in which terms of order X have been ne- 
glected; and secondly that the outer solution (26) does not exactly match the inner solu- 

tion (13). 
The first source of error may be approximately corrected by writing 

f = fo + X f l ,  0 = Oo + XO1. (27) 

When (27) are inserted in (9), (10) and terms of order X equated it is found that 

d3fi d3f~ d2f~ - O, (28) 
dY ~ + O~ + Y ~ +  d y  2 

d201 dO1 dfo O1 + 4fl  dO~ dO~ d20~ - O. (29) 
d y  ~ + 3fo d ~  d Y  - ~  + - ~ - +  Y dY  2 

Table (1) gives the solution to (28), (29) which satisfies the conditions: 
on Y = 0, 

dfl 
f i  = - - =  O1 = 0 

dY  
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and at Y = 0% 

dfl 
- 0 ,  0 1 = 0 .  

d Y  

To turn to the second source of  error. The inner limit of  the outer flow (26) is 

U o OF 

2 c?tl 

I 1 1 = U 0 1 - /?* log(1 + X Y )  

= Uo t ~* + O(X 2) , 

when the outer solution is expressed in terms of  X, Y. 

Now the outer limit of  the inner flow is 

U -~-- U O. 

It  follows that a correction term of  order X/fl* must be added to (27), i.e. 

X X 
f = fo + X f l  + --~-f12' 0 = 0 o + X01 + ~ 012, 

where 

(28) 

df l  2 

dY  
"~ bl - alY, 012 ~ O, for large values of  Y, 

and at Y = 0, 

dfl2 
f l z  = - - = 0 1 2  = 0 .  

d Y  

The solution f12 which satisfies these conditions is given in table 1, f rom this integration 

it is found that 

bl = .34. 

I t  should be noted that the term in bl is unmatched in the outer flow; this defect may be 

corrected by amending the value of Uo(x) to 

= + (29)  
x ,,P/ L 

6. Boundary layer properties 

In this section some of the overall properties of  the flow are brought together. 

Maximum velocity = Uo(x) 

- a l  + + O ( X  2) �9 
x 9 7 -  

(30) 
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Rate at which mass is entrained/unit length of cylinder 

= 2n pvx F ( ~ )  

0 1 = o(OO) + + 

= 2n pvx 3.078 + - ~ - - j .  

Heat transfer, in this case expressed in terms of the Nusselt number N defined by 

N = 2n gr =, 

is most conveniently expressed in terms of the dimensionless number N defined by 

xN 

2rca(GP) ~" 

1 FdOo dO 1 
- 42La  + x - d - f +  

X 
= .503 + .186X - . 1 2 3 - - .  

X dOlz 1 
fl* d ~  + O(XZ)jr= o 

Note that X, fl* are defined by equations (7), (25) respectively. 

(31) 

(32) 

7. Discussion 

The most important of the above properties is (32) for which it should be noted that the 
term in X/fl* is negligible for P > 104 and X < 1. It follows that (32) is now sensibly 

= .503 + .186X + O(X2). (33) 

It is interesting to compare (33) with the numerical calculations of Fujii and Uehara [2], 
for P = 100, whose results when expressed in the notation of this paper give 

= .486 + .051 X - .003 X z. (34) 

While the agreement between (33), (34) cannot be expected to be good, nevertheless (34) 
indicates that the error in (33) should be less than one per cent even when X = 1. 

The experiments of Libby [1] (reported in a review article by Soehngen [7]) were performed 
on a cylinder of radius 1.85 cm at a vertical height of  7 cm in the ranges 

104 <~ P < 106, 104 < PG < 108. 

This gives a range of values of  X from .1 to 1 and of fl from 4 to about 12, in which (33) 
is valid. Libby's results show a linear dependence of N on (GP) -~ giving a value of  N = .47. 
It is surprising that no curvature effects were observed in view of the range of values of  X. 
However the experimental values for wall temperature gradient were obtained from the 
temperature profile. Now consideration of table 1, shows that the average value of 01 in the 
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r a n g e  0 < Y < .75 ( w h i c h  c o r r e s p o n d s  r o u g h l y  to  t he  l inea r  p a r t  o f  t he  t e m p e r a t u r e  

prof i le) ,  is a b o u t  .02. I t  f o l l o w s  t h a t  t he  a v e r a g e  effect  o f  c u r v a t u r e  o n  the  t e m p e r a t u r e  

p rof i l e  in  th i s  r a n g e  is a t  m o s t  a b o u t  2 ~  ( w h e n  X = 1). T h u s  c u r v a t u r e  will  h a v e  n o  

sens ib le  effect  o n  va lues  o f  wal l  t e m p e r a t u r e  g r a d i e n t  d e r i v e d  f r o m  p o i n t s  o n  t h e  exper i -  

m e n t a l  t e m p e r a t u r e  prof i le .  

TABLE 1 

dfo ~ ~ 2  
Y fo Oo f l  O1 fl2 Ol~ 

d Y  d Y  d Y  

0 0 0 1.000 0 0 0 0 0 0 
.25 .023 .177 .822 0 .01 - . 0 4  - .01 - .07 .04 
.50 .084 .302 .649 0 0 - . 0 5  - .03 - .14 .08 
.75 .t71 .387 .485 0 - .01  - .01  - .08 - .21 .12 

1.00 .275 .441 .342 0 - . 0 2  .04 - .14 - .29 .14 
1.25 .390 .474 .225 - .01  - . 03  .09 - .22 - .38 .15 
1.50 .511 .492 .138 - . 0 2  - . 0 2  .11 - .33 - .48 .13 
1.75 .635 .502 .078 - . 0 2  - .01  .12 - .46 - .59 .11 
2.00 .761 .507 .041 - . 0 2  - .01  .10 - .62 - .70 .08 
2.25 .890 .509 .020 - . 0 2  0 .07 - .81 - .82 .05 
2.50 1.016 .510 .009 - . 0 2  0 .04 - 1.04 - .94 .03 
2.75 1.143 .510 .003 - .02 0 .02 - 1.29 - 1.07 .02 
3.00 1.271 .511 .001 - .02 0 .01 - 1.57 - 1.19 .01 
3.25 1.399 .511 0 - . 0 2  0 .01 -1 .88  -1 .32  0 
3.50 1.526 .511 0 - . 0 2  0 0 -2 .23 -1 .45  0 

TABLE 2 

dFo d 2 Fo dF1 d 2 F1 
log z Fo Fi 

dz dz 2 dz dz 2 

- -  12 .001 227 --30.8 0 20.0 - .082 
- 10 .009 166 -30.3  .001 19.5 - .416 
- 8 .046 107 -28.5  .006 17.8 -1 .49  
- -  6 .199 54.4 -22 .9  .038 12.8 -3.51 
- 4 .659 18.4 - 12.5 .160 4.96 --3.64 
- 2 1.49 3.36 - 3.42 .343 .50 - .85 

0 2.30 .326 - .422  .378 - .026  - .003 
2 2.77 .021 - .030  .297 - .006  .007 
4 2.97 .001 - .002  .224 - .0005 .0006 
6 3.04 .0001 -.0001 .184 --.00003 .00005 
8 3.07 .000002 -.000004 .167 -.000005 .000003 
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